Σάββατο 27 Νοεμβρίου 2010

Ο Ερατοσθένης και η ακτίνα της Γης


Κορυφαία πειράματα που ξεχωρίζουν για την ευρηματικότητα και τη σημασία τους στην εξέλιξη των φυσικών επιστημών παρουσιάζει από σήμερα «Το Βήμα», αρχίζοντας με τον υπολογισμό της ακτίνας της Γης από τον Ερατοσθένη

ΧΑΡΗΣ ΒΑΡΒΟΓΛΗΣ

Υδρόγειος σφαίρα του Μαρτίνου της Βοημίας, γερμανού χαρτογράφου στην υπηρεσία του βασιλιά της Πορτογαλίας, 1492


Οι αρχαίοι Ελληνες, αντίθετα με όσα πιστεύει ο μέσος πολίτης σήμερα, γνώριζαν από την εποχή του Αριστοτέλη ότι η Γη είναι σφαιρική και όχι επίπεδη. Ο Ερατοσθένης μάλιστα, με ένα πείραμα που έχει μείνει στην Ιστορία, μπόρεσε να μετρήσει την ακτίνα της Γης με ακρίβεια απρόσμενη για τα μέσα της εποχής εκείνης.

Οι μεταγενέστεροι αστρονόμοι και γεωγράφοι όμως συντάχθηκαν με την άποψη του Πτολεμαίου ότι η Γη είναι 30% μικρότερη από όσο είχε μετρήσει ο Ερατοσθένης. Το λάθος αυτό παρέμεινε για 15 αιώνες και ήταν η αιτία να αποφασίσει ο Κολόμβος το ταξίδι για την Ινδία, το οποίο κατέληξε στην ανακάλυψη της Αμερικής.

Στον τροπικό του Καρκίνου
Το πείραμα του Ερατοσθένη βασίστηκε στη μέτρηση του ύψους του Ηλίου την ίδια ημερομηνία σε δύο διαφορετικές τοποθεσίες, καθώς και στην πεποίθηση του μεγάλου έλληνα μαθηματικού ότι ο Ηλιος είναι πολύ μακριά από τη Γη, τόσο ώστε οι ακτίνες του να φθάνουν στον πλανήτη μας σχεδόν παράλληλα. Από διηγήσεις ταξιδιωτών ο Ερατοσθένης έμαθε ότι στις 21 Ιουνίου, την ημέρα του θερινού ηλιοστασίου, ο Ηλιος καθρεφτίζεται στην επιφάνεια του νερού των πηγαδιών της πόλης Συήνης, αυτής που σήμερα οι Αιγύπτιοι ονομάζουν Ασουάν. Από την πληροφορία αυτή ο Ερατοσθένης συμπέρανε ότι η Συήνη βρίσκεται πάνω στον τροπικό του Καρκίνου, δηλαδή στον παράλληλο κύκλο με γεωγραφικό πλάτος 23,5 μοίρες. Το χαρακτηριστικό των τόπων που βρίσκονται στον τροπικό του Καρκίνου είναι ότι το μεσημέρι της 21ης Ιουνίου ο Ηλιος βρίσκεται στο ζενίθ, δηλαδή ακριβώς κατακόρυφα προς τα πάνω. Ετσι οι ακτίνες του διαδίδονται κατά μήκος των κατακόρυφων τοιχωμάτων των πηγαδιών, ανακλώνται στην επιφάνεια του νερού και επιστρέφουν προς την επιφάνεια, κάνοντας ορατό το είδωλό του σε έναν παρατηρητή που κοιτάζει από το στόμιο του πηγαδιού.

Το μεσημέρι της ημέρας του θερινού ηλιοστασίου ο Ερατοσθένης μέτρησε το ύψος του Ηλίου στην πόλη στην οποία κατοικούσε, την Αλεξάνδρεια της Αιγύπτου. Η μέτρηση έγινε με τη βοήθεια ενός οβελίσκου, ο οποίος είναι το αρχαιότερο αστρονομικό όργανο στην ιστορία της επιστήμης. Το μήκος της σκιάς που ρίχνει ο οβελίσκος, διαιρεμένο με το ύψος του οβελίσκου, μας δίνει, όπως μάθαμε στο σχολείο, την εφαπτομένη της γωνίας του ύψους του Ηλίου. Η γωνία αυτή, η οποία από τη μέτρηση του Ερατοσθένη προέκυψε 7,2 μοίρες, είναι ίση (ως «εντός-εκτός και επί τα αυτά», όπως θυμούνται οι παλαιότεροι) με την επίκεντρη γωνία που σχηματίζουν δύο ακτίνες της Γης με άκρα τη Συήνη και την Αλεξάνδρεια, υπό την προϋπόθεση ότι οι δύο πόλεις έχουν το ίδιο γεωγραφικό μήκος, βρίσκονται δηλαδή στον ίδιο μεσημβρινό. Επειδή από τη γεωμετρία γνωρίζουμε ότι η απόσταση των δύο πόλεων, η ακτίνα της Γης και η γωνία που μέτρησε ο Ερατοσθένης συνδέονται με τη σχέση απόσταση/ακτίνα = 6,28x(7,2/360), η ακτίνα της Γης βρίσκεται αμέσως αν γνωρίζουμε την απόσταση των δύο πόλεων. Την εποχή του Ερατοσθένη, περί το 250 π.Χ., δεν υπήρχε ακριβής μέθοδος μέτρησης τόσο μεγάλων αποστάσεων. Σύμφωνα με την παράδοση, ο Ερατοσθένης ανέθεσε σε επαγγελματίες βαδιστές να την υπολογίσουν, και το αποτέλεσμά τους το συνέκρινε με τις εκτιμήσεις αρχηγών καραβανιών. Το τελικό του αποτέλεσμα ήταν ότι η απόσταση Αλεξάνδρειας- Συήνης ισούται με 5.000 στάδια, οπότε η ακτίνα της Γης προκύπτει ίση με 252.000

στάδια.

Για να μπορέσουμε να εκτιμήσουμε την ακρίβεια της μέτρησης του Ερατοσθένη, θα έπρεπε να γνωρίζουμε πόσο είναι το μήκος ενός σταδίου σε μέτρα, καθώς και κατά πόσο αληθεύουν οι δύο υποθέσεις του Ερατοσθένη, δηλαδή ότι η Συήνη έχει γεωγραφικό πλάτος 23,5 μοίρες και ότι Συήνη και Αλεξάνδρεια βρίσκονται στον ίδιο μεσημβρινό. Μια ματιά σε έναν σύγχρονο χάρτη δείχνει ότι και οι δύο υποθέσεις ήταν λανθασμένες, αλλά το λάθος δεν ήταν μεγάλο: το γεωγραφικό πλάτος της Συήνης είναι 24,1 μοίρες, ενώ τα γεωγραφικά μήκη των δύο πόλεων διαφέρουν μόνο κατά μία μοίρα. Επομένως η βασική πηγή σφάλματος είναι το μήκος ενός σταδίου σε μέτρα. Θα έλεγε κανείς ότι έχουν διασωθεί πολλά αρχαία στάδια, οπότε δεν έχουμε παρά να μετρήσουμε πόσο μήκος έχει ένα από αυτά. Δυστυχώς τα στάδια δεν είχαν το ίδιο μήκος σε όλες τις περιοχές της αρχαίας Ελλάδας. Αν υποθέσουμε ότι ο Ερατοσθένης εννοούσε αττικά στάδια των 185 μέτρων, τότε το αποτέλεσμά του δίνει για την ακτίνα της Γης 7.400 χιλιόμετρα, τιμή 16% μεγαλύτερη από την πραγματική. Αν όμως εννοούσε αιγυπτιακά στάδια, πράγμα που είναι και το πιθανότερο, τότε κατά τον Ερατοσθένη η ακτίνα της Γης είναι 6.316 χιλιόμετρα, μόλις 1% μικρότερη από την πραγματική, που σήμερα γνωρίζουμε ότι είναι 6.366 χιλιόμετρα!

Πώς ξεγελάστηκε ο Κολόμβος


Το πείραμα του Ερατοσθένη είχε δημιουργήσει μεγάλη εντύπωση στην εποχή του, και αρκετοί μεταγενέστεροι φυσικοί φιλόσοφοι, όπως ονομάζονταν οι επιστήμονες εκείνη την εποχή, θέλησαν να το επαναλάβουν. Ο πρώτος που γνωρίζουμε, χρονολογικά, ήταν ο Ελληνας Ποσειδώνιος ο Ρόδιος, ο οποίος γύρω στο 100 π.Χ. υπολόγισε την ακτίνα της Γης με διαφορετική μέθοδο από αυτήν του Ερατοσθένη. Υπέθεσε ότι η Αλεξάνδρεια και η Ρόδος είναι στον ίδιο μεσημβρινό και υπολόγισε ότι η επίκεντρη γωνία που σχηματίζουν οι δύο πόλεις είναι 7,5 μοίρες, παρατηρώντας όχι τον Ηλιο αλλά το ύψος του αστέρα Κάνωπου, όπως φαίνεται από τις δύο πόλεις. Υποθέτοντας ότι η απόσταση των δύο πόλεων είναι 5.000 στάδια, κατέληξε σε ένα αποτέλεσμα πρακτικά ίδιο με αυτό του Ερατοσθένη. Μεταγενέστερα όμως αναθεώρησε την εκτίμησή του για την απόσταση Ρόδου- Αλεξάνδρειας σε 3.750 στάδια, οπότε η ακτίνα της Γης προέκυψε ίση με 4.500 χιλιόμετρα, δηλαδή 30% μικρότερη από την πραγματική. Με την τιμή αυτή συμφώνησε στη συνέχεια ο ρωμαίος ναύαρχος και φυσικός φιλόσοφος Πλίνιος, ενώ την καθιέρωσε οριστικά ο έλληνας αστρονόμος Πτολεμαίος αναφέροντάς τη στο βιβλίο του Γεωγραφία.

Τα βιβλία του Πτολεμαίου έχαιραν μεγάλης εκτίμησης μεταξύ των επιστημόνων ως την Αναγέννηση, και αυτό το γεγονός ήταν η αιτία να επικρατήσει τελικά η λανθασμένη τιμή του Ποσειδώνιου για την ακτίνα της Γης. Σε υδρόγειες σφαίρες της εποχής, κατασκευασμένης με βάση αυτήν τη λανθασμένη τιμή, βλέπει κανείς τοποθετημένες την Ευρώπη, την Ασία και την Αφρική να καλύπτουν όλη την επιφάνεια της Γης, χωρίς να υπάρχει διαθέσιμος χώρος για άλλη ήπειρο. Ο Κολόμβος, με βάση παρόμοιους χάρτες, κατέληξε στο συμπέρασμα ότι η Ινδία απείχε από τα Κανάρια Νησιά μόλις 6.300 χιλιόμετρα δυτικά (αντί για τη σωστή 28.000 χιλιόμετρα), οπότε θα μπορούσε να φθάσει σχετικά σύντομα στις Ινδίες ταξιδεύοντας προς δυσμάς. Επομένως θα μπορούσε κανείς να πει ότι το λάθος του Ποσειδώνιου έπαιξε καθοριστικό ρόλο για την ανακάλυψη της Αμερικής από τον Κολόμβο, αφού είναι σχεδόν βέβαιο ότι αν γνώριζε τις πραγματικές διαστάσεις της Γης δεν θα τολμούσε ποτέ να ξεκινήσει για ένα ταξίδι 28.000 χιλιομέτρων με τα πλοία της εποχής.

Ο κ. Χάρης Βάρβογλης είναι καθηγητής του Τμήματος Φυσικής του ΑΠΘ

Πηγή
http://www.tovima.gr/default.asp?pid=2&ct=33&artId=367077&dt=14/11/2010